DQZHAN技術(shù)訊:新型功率開關(guān)技術(shù)和隔離式柵極驅(qū)動器不斷變化的格局
Maurice Moroney 市場經(jīng)理 ADI公司
基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關(guān)技術(shù)的出現(xiàn)促使性能大幅提升,超越了基于MOSFET和IGBT技術(shù)的傳統(tǒng)系統(tǒng)。更高的開關(guān)頻率將減小元件尺寸,從而減小成本、系統(tǒng)尺寸和重量;這些是汽車和能源等市場中的主要優(yōu)勢。新型功率開關(guān)還將促使其控制元件發(fā)生變化,其中包括柵極驅(qū)動器。本文將探討GaN和SiC開關(guān)與IGBT/MOSFET的一些主要差異,以及柵極驅(qū)動器將如何為這些差異提供支持。
多年來,功率輸出系統(tǒng)的功率開關(guān)技術(shù)選擇一直非常簡單。在低電壓水平(通常為600 V以下),通常會選擇MOSFET;在高電壓水平,通常會更多地選擇IGBT。隨著氮化鎵和碳化硅形式的新型功率開關(guān)技術(shù)的出現(xiàn),這種情況正面臨威脅。
這些新型開關(guān)技術(shù)在性能方面具有多項明顯優(yōu)勢。更高的開關(guān)頻率可減小系統(tǒng)尺寸和重量,這對太陽能面板等能源應(yīng)用中使用的光伏逆變器以及汽車等目標(biāo)市場非常重要。開關(guān)速度從20 kHz提高至100 kHz可大幅減小變壓器重量,從而使電動汽車的電機更輕,而且還能擴大太陽能應(yīng)用中所用的逆變器的范圍,減小其尺寸,從而使其更適合國內(nèi)應(yīng)用。另外,更高的工作溫度(尤其是GaN器件)和更低的開啟驅(qū)動要求還可簡化系統(tǒng)架構(gòu)師的設(shè)計工作。
與MOSFET/IGBT一樣,這些新技術(shù)(至少在初始階段)看起來能夠滿足不同的應(yīng)用需求。GaN產(chǎn)品通常還處于200 V范圍內(nèi),盡管近年來這些產(chǎn)品已經(jīng)飛速發(fā)展,并且出現(xiàn)了多種600 V范圍內(nèi)的產(chǎn)品。但這仍然遠不及SiC的主要范圍(接近1000 V),這表明,GaN已自然而然地取代了MOSFET器件,而SiC則取代了IGBT器件。既然超結(jié)MOSFET能夠跨越此鴻溝并實現(xiàn)高達900 V的高電壓應(yīng)用,一些GaN研發(fā)開始提供能夠應(yīng)對電壓在600 V以上的應(yīng)用的器件,這完全不足為奇。
然而,雖然這些優(yōu)勢使得GaN和SiC功率開關(guān)對設(shè)計人員**吸引力,但這種好處并非毫無代價。主要的代價是成本提高,這種器件的價格比同等MOSFET/IGBT產(chǎn)品高出好幾倍。IGBT和MOSFET生產(chǎn)是一種發(fā)展良好且極易掌握的過程,這意味著與其新對手相比,其成本更低、價格競爭力更高。目前,與其傳統(tǒng)對手相比,SiC和GaN器件的價格仍然高出數(shù)倍,但其價格競爭力正在不斷提高。許多專家和市場調(diào)查報告已經(jīng)表明,必須在廣泛應(yīng)用前大幅縮小價格差距。即使縮小了價格差距,新型功率開關(guān)也不太可能立即實現(xiàn)大規(guī)模應(yīng)用,甚至從長期預(yù)測來看,傳統(tǒng)開關(guān)技術(shù)也仍將在未來一段時間內(nèi)繼續(xù)占據(jù)大部分市場。
除純成本和財務(wù)因素外,技術(shù)因素也會有一些影響。更高的開關(guān)速度和工作溫度可能非常適合GaN/SiC開關(guān),但是它們?nèi)匀粫橥瓿晒β兽D(zhuǎn)換信號鏈所需的周邊IC支持器件帶來問題。隔離系統(tǒng)的一種典型信號鏈如圖1所示。雖然更高的開關(guān)速度會對控制轉(zhuǎn)換的處理器和提供反饋回路的電流檢測系統(tǒng)產(chǎn)生影響,但本文的其余部分將重點討論為功率開關(guān)提供控制信號的柵極驅(qū)動器所遇到的變化。
圖1. 典型功率轉(zhuǎn)換信號鏈
GaN/SiC柵極驅(qū)動器
柵極驅(qū)動器可接收系統(tǒng)控制過程產(chǎn)生的邏輯電平控制信號,并提供驅(qū)動功率開關(guān)柵極所需的驅(qū)動信號。在隔離系統(tǒng)中,它們還可實現(xiàn)隔離,將系統(tǒng)帶電側(cè)的高電壓信號與的用戶和敏感低電壓電路分離。為了充分利用GaN/SiC技術(shù)能夠提供更高開關(guān)頻率的功能,柵極驅(qū)動器必須提高其控制信號的頻率。
當(dāng)前的基于IGBT的系統(tǒng)可能在數(shù)十kHz范圍內(nèi)切換;新出現(xiàn)的要求表明,可能需要數(shù)百kHz、甚至是一至兩MHz的開關(guān)頻率。這會對系統(tǒng)設(shè)計人員產(chǎn)生困擾,因為他們試圖消除從柵極驅(qū)動器到功??開關(guān)之間的信號路徑中的電感。大限度縮短走線長度以避免走線電感將非常關(guān)鍵,柵極驅(qū)動器和功率開關(guān)的靠近布局可能會成為標(biāo)準(zhǔn)做法。GaN供應(yīng)商提供的推薦布局指南的絕大部分都強調(diào)了低阻抗走線和平面的重要性。此外,使用者將希望功率開關(guān)和支持IC供應(yīng)商能夠解決封裝和金線引起的各種問題。
SiC/GaN開關(guān)提供的更高工作溫度范圍也對系統(tǒng)設(shè)計人員**吸引力,因為這能夠讓他們更自由地提升性能,而不必擔(dān)心散熱問題。雖然功率開關(guān)將在更高溫度下工作,但其周圍的硅類元件仍然會遇到常規(guī)的溫度限制。由于必須將驅(qū)動器放置在開關(guān)旁邊,希望充分利用新開關(guān)的更高工作范圍的設(shè)計人員正面臨著一個問題,即溫度不能超過硅類元件溫度極限。
圖2. 典型柵極驅(qū)動器的傳播延遲和CMTI性能
更高的開關(guān)頻率還會產(chǎn)生共模瞬變抗擾性問題,這對系統(tǒng)設(shè)計人員來說是一個非常嚴(yán)重的問題。在隔離式柵極驅(qū)動器中的隔離柵上耦合的高壓擺率信號可能破壞數(shù)據(jù)傳輸,導(dǎo)致輸出端出現(xiàn)不必要的信號。在傳統(tǒng)的基于IGBT的系統(tǒng)中,抗擾度介于20 kV/μs和30 kV/μs之間的柵極驅(qū)動器足以抵抗共模干擾。但是,GaN器件往往具有超過這種限制的壓擺率,為魯棒系統(tǒng)選擇柵極驅(qū)動器,其共模瞬變抗擾度至少應(yīng)為100 kV/μs。推出的產(chǎn)品,例如ADuM4135,采用了ADI公司的iCoupler?技術(shù),提供高達100 kV/μs的共模瞬變抗擾度,能夠應(yīng)對此類應(yīng)用。但是,提高CMTI性能往往會產(chǎn)生額外的延遲。延遲增加意味著低端開關(guān)之間的死區(qū)時間增加,這會降低性能。在隔離式柵極驅(qū)動器領(lǐng)域尤其如此,因為在此類領(lǐng)域中,信號在隔離柵上傳輸,一般具有更長時間的延遲。但是,ADuM4135不僅提供100 kV/μs CMTI,而且其傳播延遲僅為50 ns。
當(dāng)然,對于承擔(dān)推動新型功率開關(guān)技術(shù)向前發(fā)展這一任務(wù)的柵極驅(qū)動器,并非完全是壞消息。典型IGBT的柵極充電電荷高達數(shù)百nC,因此,我們通常會發(fā)現(xiàn)柵極驅(qū)動器在2 A至6 A范圍內(nèi)提供輸出驅(qū)動能力。目前,市場上提供的GaN開關(guān)的柵極充電電荷性能提升了10倍以上,通常處于5 nC至7 nC范圍內(nèi),因此,柵極驅(qū)動器的驅(qū)動要求已顯著降低。降低柵極驅(qū)動器的驅(qū)動要求可使柵極驅(qū)動器尺寸更小、速度更快,而且還能減少添加外部緩沖器以增強電流輸出的需求,從而能夠節(jié)約空間和成本。
結(jié)論
人們很早以前就預(yù)測到,GaN和SiC器件將成為功率轉(zhuǎn)換應(yīng)用中的新型解決方案,這種技術(shù)人們期待已久,現(xiàn)在終于得以實現(xiàn)。雖然這種技術(shù)能夠提供**吸引力的優(yōu)勢,但它們并非沒有代價。為了提供出色性能,新型開關(guān)技術(shù)需要更改所用隔離式柵極驅(qū)動器的要求,并且會為系統(tǒng)設(shè)計人員帶來新的問題。優(yōu)勢很明顯,并且也已經(jīng)出現(xiàn)了多種解決這些問題的方案。而且,市場上已經(jīng)有現(xiàn)成且可行的GaN和SiC解決方案。